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ABSTRACT
Introduction: Chronic musculoskeletal pain is very prevalent, and accounts for major health-care 
expenses. Many of the present therapeutic modalities are only partially effective, and great interest is 
now posed on regenerative medicine.
Areas covered: The authors discuss the role of a variety of regenerative medicine options to induce 
and favor regeneration and healing of tendon tissue, focusing on the role of mesenchymal stem cell 
therapy and their derivatives.
Expert opinion: Stem cells, tissue engineering, and growth factors are new strategies for tendon repair 
and regeneration. MSCs not only can differentiate in tendon cells, but also secrete several cytokines that 
modulate inflammation and tissue healing. Future studies should be undertaken to overcome current 
obstacles to clinical translation. Further investigation of cell source, isolation, expansion, and differ-
entiation methods, characterization of the tenogenic differentiation pathways, and clarifications of 
tendon-specific molecular markers are required. The role of donor variability, tendon type, and ana-
tomic location also requires further understanding and research.
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1. Introduction

Chronic musculoskeletal pain accounts for major financial 
burden worldwide: the increase in life expectancy has induced 
a greater rate of chronic musculoskeletal pain [1,2]. A new 
modality which is producing increasing interest in the man-
agement of chronic musculoskeletal pain is regenerative med-
icine [3,4,5]. In general, the process of healing follows three 
steps, regardless of the cause of damage: inflammation, pro-
liferation, and remodeling [6,7]. These processes are character-
ized by complex biochemical interactions and signaling 
patterns between several cytokines, cells, and environment 
[8]. The remodeling stage results from the balance of regen-
erative and fibrotic processes [9]. This balance often does not 
result in a restitutio ab integrum, but rather in a fibrotic scar [9]. 
Mesenchymal stem cells (MSCs) have been proposed as pos-
sible treatment to shift the balance in favor of regeneration 
[5]. These cells can differentiate into any tissue, thus raising 
wide interests, broad researches, and applications in orthope-
dic surgery and musculoskeletal medicine [10,11]. MSC thera-
pies are multidisciplinary, involving engineering, molecular 
biology, and medicine [12,13] (Table 1).

2. Clinical relevance

Tendon damages are common in orthopedic surgery, and in 
sports and musculoskeletal medicine [14]. The regeneration 
balance of tendon injuries is highly in favor of fibrotic healing 

[15,16]. From a biomechanical point of view, a healed tendon 
is not as efficient as an uninjured one [10,17]. The fibrotic scar 
that forms from the healing process compromises the biome-
chanical proprieties of the tendon, reducing its elasticity and 
promoting adherences [11,18]. Clinically, a higher risk of recur-
rence and/or development of chronic degenerative tendino-
pathies has been reported after tendon injuries [11,19,20]. 
Recovery time is often prolonged, thus considerably reducing 
recreational activities and quality of life [14,20]. Surgery is 
considered the ultimate intervention for tendinopathies 
[19,21]. However, up to 40% of the patients operated still 
experiences complications and functional limitations following 
tendon surgery [22,23]. The high rate of failure suggests that 
current surgical treatment is not sufficient and may not be 
appropriate, and further solutions are required. For chronic 
tendinopathy, local or systemic administration of anti- 
inflammatory agents, shock waves, physiotherapy, electro-
magnetic field stimulation, hyaluronic acid, platelet-rich 
plasma, or other growth factors have been employed 
[24,25,26]. However, these treatments have not proven effec-
tive for the definitive treatment of chronic tendinopathies [27].

Patients’ BMI and comorbidities are recognized as risk fac-
tors for poor surgical outcome [28,29,30]. Female gender also 
represents a risk factor, with males reporting less symptoms, 
greater satisfaction, and better functional outcomes compared 
to females [31]. Age is also a well-known risk factor for poor 
outcomes after tendon repair surgery [32,33]. The elderly 
demonstrated impaired Achilles tendon healing after rupture, 
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a two-fold risk of rotator cuff tears, and a three-fold risk to 
suffer a massive rotator cuff tear compared to the younger 
population [34,35]. In diabetes mellitus type II patients, hyper-
glycemia promotes collagen glycation and compromises the 
extracellular matrix (ECM) composition, with poor healing cap-
abilities [36]. Hypercholesterolemia has also been associated 
with a higher risk of tendinopathy of the rotator cuff and 
Achilles tendons [37,38]. Smokers present thinner and harder 
tendons compared to nonsmokers, with increased risk of rup-
ture and poor surgical outcomes [39,40]. Further, ovariecto-
mized rats showed reduced Achilles tendon healing capability, 
evidencing that hormones may influence the healing pro-
cesses in an animal model [41].

3. Tendon healing process

Hypovascularity and hypocellularity, along with minimal meta-
bolic activity [42,43], may be related to the low healing 

capability of tendons, which involve both intrinsic and extrin-
sic cell populations [44]. Epitenon, endotenon, and tendon 
parenchyma cells are all involved in the intrinsic processes, 
while circulating cells or those from adjacent tissues pertain to 
the extrinsic ones [45]. However, the processes of tendon 
healing have not yet been fully elucidated. This may also be 
caused by the lack of optimal in vitro experimental models, 
a consequence of several reason. First, experimental models 
originate mainly from acute tendon section models [46]. 
Furthermore, there are considerable differences in species- 
related healing processes [47,48]. Indeed, probably there are 
no two species with the exactly same features of tendon 
healing [48]. Non-human primates, such the macaques, repre-
sent the gold-standard for tendon animal model, but are 
connected to high costs and ethical limitations [48]. 
Therefore, rats are widely used, but their tendon healing 
process is far different from the human one [48].

As all musculoskeletal structures, tendon healing runs into 
three main temporally and biochemically overlapping stages: 
inflammation, proliferation, remodeling [49,50]. The acute 
inflammation stage lasts up to three days. Acute tendon rupture 
provokes a bleeding that initiates inflammation (extrinsic path-
way). Activated platelets release chemotactic and growth factors, 
which trigger the migration of inflammatory cells and activate 
the tenocytes [49,51]. Tenocytes are responsible for the synthesis 
of immature fibrous tissue, composed of fibronectin and 
Collagen (Col) type III [52]. Inflammatory cells secrete several 
cytokines, such as Insulin-Like Growth Factor 1 (IGF-1), Platelet- 
Derived Growth Factor (PDGF), Transforming Growth Factor-Beta 
(TGF-β) (Vascular Endothelial Growth Factor (VEGF), basic 
Fibroblast Growth Factor (bFGF), which promote capillary perme-
ability, chemoattraction, angiogenesis, cell migration, and stimu-
lation and proliferation of macrophages and fibroblasts 
[10,53,55,56]. During the proliferation stage, intrinsic tenocytes 
migrate from the endotenon to the injury site, along with fibro-
blasts from the epitenon and the synovial sheath (intrinsic path-
way). The latter, along with other smaller cells populations, is 

Article highlights

● The management of tendon healing is challenging and often leads 
tosuboptimal outcomes

● The regeneration balance of tendon injuries is highly in favor of 
fibrotic healing, compromising the biomechanical proprieties, elasti-
city, and promoting adherences

● Mesenchymal stem cells yield growing interest for tendon repair and 
regeneration.

● MSCs not only can differentiate in tendon cells, but also secrete 
several cytokines that modulate inflammation, enhancing 
a regenerative tissue healing.

● Future studies should be undertaken to overcome current obstacles 
to clinical translation: (1) cells source, isolation, expansion and differ-
entiation methods, (2) characterization of the tenogenic differentia-
tion pathways, (3) clarification of tendon-specific molecular markers 
and (4) the role of donor variability, tendon type, and anatomic 
location.

This box summarizes the key points contained in the article.

Table 1. Clinical studies investigating MSC transplantation for tendon healing (VAS: Visual Analogic Scale; SPADI: shoulder pain and disability index; mMCPI: Mayo 
Clinic Performance Index; MRI: Magnetic Resonance Imaging; CS: Constant Score; Col I: Collagen Type 1; BM-MSCs: bone marrow-derived stem cells; AD-MSCs: 
adipose derived-mesenchymal stem cells).

Author, year Study Design Patients Cells Source Outcomes

Lee et al. 
2015 [21]

Prospective 
trial

Six patients suffering from 
chronic epicondylitis

Autologous AD-MSCs 
injections

At last follow-up, VAS decreased by 52%, while mMCPI increased by 26.6%, 
and on ultrasound examination a reduction in defect areas was observed. 
No adverse effect was recorded.

Jo et al. 
2018 
[120]

Prospective 
trial

18 patients with partial- 
thickness rotator cuff

Autologous AD-MSCs 
injections

At last follow-up, the SPADI decreased by 80% and 77% in the mid- and high- 
dose groups, respectively. The high-dose group reported a reduction of the 
VAS by 71%. At ultrasonography, the defect area significantly decreased in 
almost all the patients. No adverse effect was recorded.

Havlas et al. 
2015 
[121]

Prospective 
trial

10 patients with rotator 
cuff tears

Autologous BM-MSCs 
Injections

At six months, the VAS scored 0/100 and all other scores were also improved. 
MRI scans showed fully healed and well-integrated tissue of the rotator cuff 
tendon attachment in all patients. No adverse effect was recorded.

Lamas et al. 
2015 
[122]

Randomized 
controlled 
trial

13 patients with full- 
thickness rotator cuff 
tears

Autologous BM-MSCs 
implantation

At 12 months, the CS improved by 31% in the BM-MSCs group. Three patients 
in the BM-MSCs group and one in the control group (only Col I) underwent 
revision surgery because of swelling, recurrent tear symptoms and reduced 
range of motion.

Lamas et al. 
[123]

Randomized 
controlled 
trial

13 patients with full- 
thickness rotator cuff 
tendon tears

Autologous BM-MSCs 
embedded in 
scaffold

The trial was interrupted because of the high recurrence rate. However, the 
authors reported better CS in favor of the BM-MSCs group, and similar 
imaging findings in the two groups.

Hurd et al. 
2020 
[124]

Randomized 
controlled 
trial

20 patients with partial- 
thickness rotator cuff 
tears

Autologous ADMSCs 
injections

AD-MSCs were safe, and lead to improved shoulder function without adverse 
effects at one-year follow-up
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highly stimulated by immune cells, especially macrophages [51]. 
Cell migration, proliferation and phenotypical expression are 
stimulated by IGF-1, PDGF, TGF-β, and GDF [54,57,59,60]. This 
results in an early ECM composed mostly by fibronectin, proteo-
glycans, and Col III [18,61,62]. The remodeling phase starts 
approximately after two months and lasts up to two years, and 
is characterized by a decrease in cellularity in favor of fibrosis. 
Cytokines such as IGF-1, TGF-β, and GDF are secreted mostly by 
intrinsic cells and act to promote these changes [58,60,63,,64,65]. 
Tendon fibroblasts differentiate in myofibroblasts to contract the 
granulation tissue produced during the proliferation stage, thus 
transforming it in a finite fibrous scar [66,67] Col III is replaced by 
Col I, the fibers of which align along the direction of prevalent 
strain, to build stiffness and strength [58]. During this phase, 
there is a reduction in tendon vascularization and tenocyte 
metabolism [46].

4. Regenerative medicine to enhance tendon 
healing: stem cells

Stem cells have been defined as cells capable of long-term 
division and self-renewal, not committed, which can differenti-
ate in all cell lineages [20,68]. Stem cells have excised wide 
interests, with broad researches and applications to treat 
musculoskeletal diseases [69,70,71,72]. Current evidence sup-
ports stem cell procedures for musculoskeletal disorders 
[73,74,75,76,77,78,79].

Stem cells are a population of non-committed cells able to 
differentiate into every cellular lineage; they have high prolif-
eration potential, and can modulate the immune response and 
tissue tropism [80,81,82,83]. Stem cells have been hypothe-
sized to promote regeneration in tendon healing process 
[84,85,86,87]. The goal of stem cell application is to modulate 
inflammation, organize ECM regeneration, and promote 
a tissue regeneration over scarring [7,88]. However, some 
differences in the various populations of stem cells must be 
pointed out.

Tendon stem/progenitor cells (TSPCs) are multipotent adult 
stem cells involved in healing process [89,90,91]. TSPCs have 
been reported to show clonogenicity, differentiation potential, 
and express specific stemness surface marks [92]. Moreover, 
these TSCs also express tenogenic markers, which make them 
a distinct stem cell population. The population of TSPCs reduces 
with aging, possibly accounting for the higher prevalence of 
tendinopathies in the elderly [92,93]. A recent study demon-
strated that Bone Morphogenetic Proteins 12/13 (BMP12/13) in 
addiction with ascorbic acid activate the tenogenic differentia-
tion of pluripotent stem cells in vitro [16]. The efficacy and 
feasibility of autologous tenocyte implantation are currently 
under clinical investigation (Phase 2–3 clinical trial, 
NCT01343836). TSPCs have been demonstrated to differentiate 
in tenocytes in vitro and in animal studies [94,95,96,97]. TSPCs 
account approximately for 4% of the tendon cellular population 
[98]: given this scarce number, in vitro expansion is required prior 
to injection to allow for therapeutic effects. This procedure is 
limited by the high risk of phenotype drift [99]. Recently, the use 
of epigenomic approaches has been proposed to address this 
issue (e.g. with inhibitors of histone deacetylase activity) and 
maintain a stable phenotype [100]. The epigenetic code is 

composed by highly complex biochemical mechanisms and 
pathways that control DNA accessibility (e.g. histone modifica-
tions, methylation, non-coding RNA) [101,102,103,104]. This con-
trol leads to an increased lineage commitment of the cell 
(differentiation), and can thus be used to limit phenotype drift 
during ex vivo expansion. Tenocytes have been demonstrated to 
express the thyroid hormone receptor [105]. The role of Thyroid- 
stimulating hormone (Tsh) has not been clearly defined. An 
overexpression of thyroid receptor isoforms is protective against 
tendon apoptosis and enhances proliferation in in vitro studies 
[106]. A further experimental study found that Triiodothyronine 
(T3) combined ascorbic acid enhanced the tendon regeneration 
during the healing process, demonstrating close to the physio-
logical orientation of fibers and capillarity, along with improved 
Col I/III ratio.

Several harvest sources of MSCs have been described for 
tendon healing: bone marrow (BM-MSCs), adipose tissue- 
derived (AD-MSCs), and other less common sites. Bone mar-
row cell population is composed by 0.01% to 0.001% of BM- 
MSCs [107], with a reduction in cell quantity and quality in the 
elderly [108]. These can be easily harvested via bone marrow 
aspiration (e.g. iliac crest). Further expansion and tenogenic 
differentiation can be obtained with several growth factors 
(e.g. Growth Differentiation Factors, GDF 5,6,7) [109,110]. The 
expression of tendon surface proteins (e.g. Tenomodulin) indi-
cates tenogenic commitment [111,112]. This phase must be 
strictly controlled, as a longer expansion can induce an osteo-
genic lineage differentiation growth [108]. BM-MSCs secrete 
grow factors and other soluble cytokines that induce cellular 
proliferation and control tissue signaling [113] and enhance 
tenogenic proprieties of tendon resident cells [113]. Compared 
to BM-MSCs, AD-MSCs have higher availability, reduced donor- 
site morbidity, and higher cellular content. Similar to BM- 
MSCs, AD-MSCs enhance the tenogenic properties of tendon 
resident cells [114,115], and play a role in preserving the 
native tendon architecture, expediting ECM remodeling, and 
improving Col I/III ratio [115,116]. AD-MSCs are easier to differ-
entiate in tenogenic cells and express more tenogenic genes 
(e.g. Tnmd, TcC, Dcn) as well as Col I and III [117]. These 
features make AD-MSCs more promising for tendon healing 
compared to BM-MSCs [14,118,119].

5. In-human applications of MScs for tendon repair

Several protocols for clinical trials investigating the role of MSCs 
for tendon healing have been currently registered, and investi-
gations are ongoing (NCT03688308, NCT01788683, 
NCT02484950, NCT03449082, NCT03279796, NCT03752827, 
NCT03454737). The current literature lacks in definitive human 
clinical trials. Lee et al. [21] treated six patients suffering from 
chronic epicondylitis with allogenic AD-MSCs injections. Patients 
were followed at 0.5, 2, 6, 12, 26, 52 weeks. The visual analogic 
scale (VAS) and the modified Mayo Clinic Performance Index 
(mMCPI) were used as clinical scores, along with an ultrasound 
examination of the tendon defect area. At last follow-up, VAS 
decreased by 52%, while mMCPI increased by 26.6%, and on 
ultrasound examination, a reduction in defect areas was 
observed. No adverse effect was recorded. Jo et al. [120] treated 
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18 patients with partial-thickness rotator cuff tear with 
autologous AD-MSCs injections and reported data regarding 
safety and tolerability of dose escalations along with clinical 
data on disability (shoulder pain and disability index, SPADI). 
The SPADI decreased by 80% and 77% in the mid- and high- 
dose groups, respectively. The high-dose group reported 
a reduction of the VAS by 71%. At ultrasonography, the defect 
area significantly decreased in almost all the patients. No adverse 
effect was recorded. Another study evaluating autologous BM- 
MSCs infiltrations for rotator cuff tears was performed by Havlas 
et al. [121]. The authors prospectively analyzed eight patients at 3 
and 6 months after the injection with the VAS, Constant Score 
(CS), and the University of California (UCLA) score. At six months, 
the VAS scored 0/100 and all other scores were also improved. 
MRI scans showed fully healed and well-integrated tissue of the 
rotator cuff tendon attachment in all patients. No adverse effect 
was recorded. Lamas et al. [122] performed a double-blind ran-
domized placebo-controlled trial evaluating the safety and effec-
tiveness of autologous MSCs implantation in patients with full- 
thickness rotator cuff tears. The study was performed on 13 
patients: five patients were treated with a Col I implant, while 
eight patients received a Col I membrane combined with auto-
logous BM-MSCs. At 12 months, the CS improved by 31% in the 
BM-MSCs group. The rate of tear and repair integrity was similar 
in both groups. Three patients in the BM-MSCs group and one in 
the control group underwent revision surgery because of swel-
ling, recurrent tear symptoms, and reduced range of motion. 
Chronic synovitis with granulomatous tissue was histologically 
evidenced, and symptoms disappeared after revision surgery. 
Recently, the same author [123] compared the safety and efficacy 
of autologous BM-MSCs embedded in a xenogenic scaffold for 
full-thickness rotator cuff tendon tears in a randomized, double- 
blind placebo-controlled trial. Thirteen patients were enrolled: 
recurrence of the rupture occurred in five of eight patients of the 
BM-MSCs group, and in three of five patients in the control 
group. The trial was interrupted because of the high recurrence 
rate. However, the authors reported better CS in favor of the BM- 
MSCs group and similar imaging findings in the two groups. 
A recent RCT [124] compared the efficacy of autologous 
ADMSCs to corticosteroid injections in 20 patients with partial- 
thickness rotator cuff tears. ADMSCs were safe, and lead to 
improved shoulder function without adverse effects at 12- 
month follow-up.

6. Expert opinion

Acute tendon rupture and chronic tendinopathies are highly 
prevalent, and represent a consistent burden for health-care 
systems worldwide. Overall, even surgery does not result in full 
restoration of function, and many acute injuries evolve into 
chronic tendinopathies. Stem cells, tissue engineering and 
growth factors are gaining attentions in the scientific community 
to meet the demand for new strategies for tendon repair and 
regeneration. The role of MSCs is controversial and unclear. In 
vitro and in vivo investigations clearly identified MSCs among 
resident tendon cells, proving their involvement in regenerative 
processes of the tendon. MSCs not only can differentiate in 
tendon cells, but also secrete several cytokines that modulate 
inflammation and tissue healing. A deeper understanding of 

intrinsic and extrinsic biomechanical pathways and signaling, as 
well as of molecular mechanisms, will help identify the best type 
of uncommitted MSC for transplantation and boost the use of 
these cells in regenerative medicine. This synergic ‘transplanta-
tion – potentiation’ may offer new insights and prospective, 
reduce fibrosis, and improve regeneration. Future studies should 
be undertaken to overcome current obstacles to clinical transla-
tion. MSCs can be directly injected or can be reprocessed, pur-
ified, expanded, and then injected. This would lead to a more 
homogeneous population and higher concentration. However, 
these processes are controversial and no consensus has been 
reached. Further investigation of cell source, isolation, expansion, 
and differentiation methods, characterization of the tenogenic 
differentiation pathways, and clarifications of tendon-specific 
molecular markers are required. This reflects the limitations on 
tendon cell isolation and characterization. As the molecular mar-
kers to characterize tenocytes are still unclear, the definition of an 
exact lineage differentiation is not completely possible, thus 
considerably restricting the development of effective cell-based 
therapies. Initially, tendon cells were isolated following collage-
nase digestion in explanted tissues. In the past few years, several 
protocols for cell isolation have been developed, but no con-
sensus has been reached. This process is further complicated by 
lack of molecular markers for the clear definition of tenocytes. 
Further, deeper understanding of the interactions between MSCs 
and tendon cells of their signaling pattern and influence on the 
regenerative cascade is required to develop appropriate thera-
peutic protocols. The role of donor variability, tendon type, and 
anatomic location also requires further understanding and 
research.
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