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Skeletal muscle is a highly interactive connective tissue that makes up a large portion of an
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adult’s body mass. Muscles are integrated with tendons as well as other specialized structures
to support physiologic and homeostatic functions. In the state of injury, muscles have the ability
to innately repair themselves through various phases of tightly regulated healing that can result in
fibrotic tissue development. However, during aging, these homeostatic processes are disrupted
leading to sarcopenia and reduced muscle regeneration capacity. Several cell-based therapies
and biologic therapies have been investigated to regenerate skeletal muscle tissue and reduce
fibrosis following injury or during aging. These include platelet-rich plasma (PRP) and an acellular
portion of blood known as platelet-poor plasma (PPP). However, current clinical practice recom-
mendations for the utilization of different PRP preparations vs PPP are unclear. Recent efforts
have strove to improve the understanding of the role of senescent cells and profiles in the pres-
ence of early to late stage skeletal muscle injury and fibrosis, yet targeted interventions to remove
senescent cells and attenuate the secretory environment to improve muscle regeneration are still
forthcoming. Therefore, the purpose of this article is to review the basic principles of skeletal mus-
cle repair, the role of senescence in attenuated muscle regeneration, and discuss current stand-
ards and literature supporting PRP and PPP treatment for skeletal muscle repair. This review
concludes with future directions to improve biologic therapies and ongoing initiatives to custom-
ize PRP and PPP preparations using Food and Drug Administration-approved medications.
Oper Tech Sports Med 28:150754 © 2020 Published by Elsevier Inc.
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Introduction

Skeletal muscle is a highly interactive connective tissue that
makes up 30%-40% of an adult’s body mass.1,2 Muscles are
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integrated with tendons as well as other specialized structures
to support physiologic and homeostatic functions.2,3 In the state
of injury, muscles naturally heal through different phases that
can result in fibrotic tissue development, especially in patho-
logic states or during aging.3,4 Although, the course of age-
related muscle adaptations has shown to hinder recovery, acti-
vation of muscle stem cells, and repair mechanisms.4,5 The
increased burden of senescent cells and the senescence-associ-
ated secretory phenotype (SASP) has been shown to increase
with age and play a significant role in muscle atrophy and
reduced repair capacity.6-9 Recent efforts have strove to improve
the understanding of the role of senescent cells and profiles in
the presence of early to late stage skeletal muscle injury and
fibrosis,6-8 yet targeted interventions to remove senescent cells
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and attenuate SASP to improve muscle regeneration are forth-
coming. Meanwhile, several cell-based therapies and biologic
therapies have been investigated to regenerate skeletal muscle,
including platelet-rich plasma (PRP) and an acellular portion of
blood known as platelet-poor plasma (PPP).10-17 However, cur-
rent clinical practice recommendations for the utilization of dif-
ferent PRP preparations vs PPP remain unclear. The purpose of
this article is to review the basic principles of skeletal muscle
repair, the role of senescence in attenuated muscle regeneration,
and discuss current standards and literature supporting PRP
and PPP treatment for skeletal muscle repair. This review con-
cludes with future directions to improve biologic therapies and
ongoing initiatives to customize PRP and PPP preparations
using Food and Drug Administration-approved medications.
Skeletal Muscle Healing and Regeneration
Skeletal muscle has an intrinsic ability to regenerate damaged
tissue following injury.18 In response to muscular injury in
the form of strain, contusion or laceration, a specific biologi-
cal response commences consisting of muscle degeneration,
inflammation, regeneration, and fibrotic scar formation.19

The phases of skeletal muscle healing are summarized below.
Muscle Degeneration: Muscle degeneration near the site of an

injury may be induced following a direct tear or compressive
force. This is characteristic of contusion or laceration injuries that
can induce muscle degeneration near the injury site, while the
tensile force of a muscle strain can cause a rupture, resulting in
the induction of muscular degeneration near the musculotendon
integration point.20 Though mechanical injury such as a contu-
sion, laceration, or strain can disrupt the entire length of a muscle
fiber, the extent of injury and resulting necrosis is contained by
cytoskeleton contraction bands that are distributed throughout
each muscle cell.21 Following injury, plasma membrane damage
and a subsequent influx of extracellular calcium cause muscle
protein degradation, typically reconciling necrosis within a mat-
ter of hours. Blood vessel damage precedes swelling and hema-
toma formation and further promotes muscle degeneration.21

Inflammation: The inflammatory cascade is initiated by the
release of chemoattractants, such as cytokines, chemokines
and growth factors from damaged cells within injured tissue.
It is hypothesized that the release of said chemoattractants
cause chemotaxis of circulating inflammatory cells to the site
of injury via damaged blood vessels and the release of growth
factors from the disrupted extracellular matrix.22,23 Addi-
tional growth factors, cytokines, and chemokines are pro-
duced by macrophages and fibroblasts in response to injury
and serve to further promote the inflammatory response.24

Neutrophils are the predominant immune cell during the ini-
tial pro-inflammatory phase, followed by an influx of mono-
cytes within 2 days of the injury.25 These monocytes give
rise to macrophages that degrade and remove the necrotic tis-
sue prior to skeletal tissue regeneration.25

Regeneration: Satellite cells are a major contributor to mus-
cle regeneration, which occurs approximately 1-4 weeks after
the injury.20 Though muscle fibers are terminally differenti-
ated, skeletal muscle contains undifferentiated satellite cells
that are capable of forming new muscle tissue.26 These cells
are found underneath the basal lamina of myofibers and are
stimulated by growth factors secreted during the immune
response.27 These cells become myoblasts, capable of fusing
with the injured myofibers. Additional progenitor cells found
in muscle tissue, blood vessels, bone marrow, connective tis-
sue, and mesenchymal tissues are also critical contributors to
muscle regeneration.28

Fibrosis: Fibrosis, the formation of a connective tissue scar,
begins with the cross-linking of fibrin and fibronectin within
a hematoma to create early granulation tissue.29 Fibroblasts
contribute to fibrosis by anchoring to the granulation tissue
and synthesize extracellular matrix components. Several days
later, fibroblasts produce type I collagen, characteristic of
mature scar tissue.2 Though this fibrotic tissue increases
muscular tensile strength, the scar-myofiber interface is sus-
ceptible to rupture and is therefore often implicated in skele-
tal muscle reinjury.30
The Role of Cellular Senescence in Skeletal
Muscle Healing
Somatic stem cells reside in an undifferentiated state in sev-
eral adult tissues. In muscle, satellite cells play a pivotal role
in muscle regeneration in a coordinated effort with immune
cells and nascent muscle cells.5,31-33 Upon activation driven
by immune cell signals, satellite cells proliferate and fuse to
form new muscle fibers to regenerate muscle fibers, followed
by a return to a quiescent state for downstream regenera-
tion.34 However, aging disrupts this process leading to signif-
icant reduction in regeneration and growth, resulting in
conditions such as frailty and sarcopenia. First, there is evi-
dence of an age associated decline in satellite cell number.35-
37 In addition, there is a noticeable attrition in satellite cell
function with age38-40 including loss of self-renewal capacity,
loss of homeostatic signaling ability which leads to impaired
regeneration capacity and functional muscle loss.5,32,37,41-44

Aging is also associated with an increased burden of senes-
cent cells,37,45 which is thought to contribute to stem cell
dysfunction through the production of senescence associated
pro-inflammatory and antiregenerative factors.46,47 Thus,
age-related decline in muscle regeneration involves cell
autonomous mechanisms (loss of satellite cell function) and
noncell autonomous mechanisms (senescent cells).

Immunosenescence is a major noncell autonomous driver of
age-related musculoskeletal demise. Immunosenescence is an
age-associated phenomenon whereby immune cells exhibit
altered function or anergy.48-53 This includes significant alter-
ation in the secretory profile of immune cells resulting in an
increase in circulating pro-inflammatory cytokines like TNF-a,
IL-6, and/or IL-1b which leads to a chronic state of low-grade
inflammation, called inflammaging.31,47 This significantly
impacts muscle regeneration and induces cellular senescence
due to the fact that the cross-talk between immune cells and
muscle satellite cells is an early and critical stage of muscle
repair.22 Immunosenescence has been well reviewed else-
where,48-53 but in the context of muscle regeneration, macro-
phages play a critical role in reduced repair capacity with age.
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Macrophages are critical to signal proliferation of satellite cells
and to protect satellite cells from apoptosis54 but these functions
are blunted during the aging process.55 In murine studies, it has
been shown that the number of activated MyoD expressing sat-
ellite cells co-expressing pro-apoptotic markers like Bax is
higher in aged animals.55 In addition, isolated satellite cells
from aged animals exhibit reduced expression of the antiapop-
totic marker Bcl-2, associated with an increased sensitivity to
TNF-a induced pro-apoptotic caspase activation.56 In human
studies, it has been found that aged adults (71+) have fewer
macrophages than those of younger individuals and that macro-
phages of aged patients exhibited higher expression levels of
both pro-inflammatory cytokines IL-1b and anti-inflammatory
cytokines IL-1RA and IL-10 indicating a general disruption of
muscle homeostasis at the macrophage level with aging.57

Accordingly, it was also found that macrophage response fol-
lowing exercise was reduced, in regards to their pro-inflamma-
tory and anti-inflammatory expression profiles.57,58

Muscle stem cells are also directly affected by age in a cell
autonomous manner via the induction of cellular senescence
which is thought to directly lead to dysfunction and loss of
proliferative ability and response to immunomodulation dur-
ing muscle regeneration. With aging, muscle stem cells dis-
play a senescent phenotype typified by expression of the cell
cycle inhibitor p16Ink4a. This leads to depression of Rb/E2F
target genes5 and in addition to p16Ink4a, p21Cip1 expres-
sion is increased leading to cell cycle arrest. This is most
clearly demonstrated using the BubR1 hypomorphic mouse
model of progeria whereby the expression of p16Ink4a in
muscle stem cells has been shown to directly contribute to
muscle wasting and repair dysfunction5,45,59,60 and that con-
ditional ablation of p16Ink4a expressing muscle stem cells
improves muscle performance and attenuates wasting59

Thus, cell autonomous alterations due to senescence induc-
tion in muscle stem cells significantly limits the self-renewal
capacity of the tissue5,41,42,44 and targeting senescence in
aged muscle tissue may improve muscle repair42 but can also
be used to delay sarcopenia.61

Of note, while senescence in muscle stem cells and infiltrat-
ing immune cells likely disrupts muscle homeostasis with age,
emerging evidence suggests a positive role for acute cellular
senescence during muscle regeneration. It was recently found
that senescence of fibro-adipogenic progenitors (FAPs), in
response to exercise-induced muscle damage, is required to
maintain levels of important pro-inflammatory regenerative fac-
tors to support optimal muscle regeneration.62 FAPs are muscle
resident platelet-derived growth factor receptor-a-positive
(PDGFRa+) mesenchymal progenitors that are essential regula-
tors of inflammation during the regeneration process via pro-
motion of satellite cell differentiation.63,64 When FAPs become
dysfunctional, due to aging or disease, they play a role in
chronic inflammation and fibrosis.65-67 During the chronic
inflammation setting, like in muscle aging, FAPs have been
found to take on a senescent phenotype that is anti-apoptotic
resulting in lack of FAP clearance and increased fibrosis.62,64

Thus, the transition of FAPs to a senescent phenotype seems to
have positive effects on muscle regeneration and the prevention
of fibrosis and should thus be considered when targeting
senescence in muscle as an intervention to improve muscle
regeneration/repair. The notion that senescence can play an
important role in tissue homeostasis, outside the pathologic set-
ting, is not foreign. Indeed, senescent cells have been found to
be important for tissue remodeling during embryonic develop-
ment,68,69 tissue repair,70,71 and tumor suppression.72

Overall, targeting senescent cells in muscle may have
potential therapeutic benefits for tissue repair via restoration
of stem cell function and SASP factor reduction. However, it
remains to be determined whether senescence should be tar-
geted at a particular phase in the muscle healing process,
especially considering the protective role of FAP senescence
in early stages of muscle regeneration. More studies are nec-
essary to uncover these answers using novel tools that target
senescent cells and SASP, such as transgenic murine systems
and senolytic agents that selectively eliminate senescent cells.
There will always be a delicate balance between preservation
of stem cell benefits and removal of deleterious effect of cellu-
lar senescence.
Challenges in Current Biological Approaches
to Skeletal Muscle Healing
Recent biological approaches to improve muscle healing after
injury have focused on enhancing muscle regeneration and
reducing muscle fibrosis.10,19,29,63,73 These alternative
approaches include, gene therapy, exercise, neuromuscular
electrical stimulation, blood flow restriction, and massage
therapy; however, additional research is necessary to deter-
mine their efficacy in enhancing skeletal muscle repair.10,19

Traditionally, rest, ice, compression, and elevation, or RICE
protocols, in conjunction with nonsteroidal anti-inflamma-
tory drugs (NSAIDs), have been recommended in the
treatment of acute musculoskeletal injury.3 Though immobi-
lization immediately after injury is beneficial in reducing
bleeding, swelling, and fibrotic scar size, after several days,
immobilization becomes detrimental to muscle regenera-
tion.74 Prolonged immobilization can lead to muscle atrophy
and decreased strength, increased connective tissue deposi-
tion, as well as decreased histologic and functional healing,
as demonstrated in a mouse laceration model.75 Similarly,
NSAID administration was investigated to determine the
effect of cyclooxygenase-2-specific inhibitors on muscle atro-
phy in vitro and in vivo.76 These experiments demonstrated
delayed musculoskeletal healing and increased fibrotic depo-
sition after treatment with NSAIDs.76

Biologic augmentation with stimulatory growth factors,
gene therapies, cell therapies, and antifibrotic agents aim to
improve muscle regeneration and repair. Despite the safety
and accessibility of recombinant growth factor injections,
this treatment is often only efficacious with a high concentra-
tion of recombinant factors and consecutive injections.77 Pre-
clinical investigations of gene therapy suggest that this novel
approach may be useful for delivering beneficial factors while
targeting specific deleterious factors, though its application is
currently encumbered by its immune response and cytotox-
icity side effects.78 Allogenic stem cell therapies have shown
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promise in pre-clinical studies, as results have shown that
injection of muscle-derived stem cells following surgical
repair can increase angiogenesis and reduce scar
tissue.79 Additionally, intraperitoneal injection of muscle-
derived stem cells has been found to increase lifespan and
reduce fibrosis in progeroid animals.80
Platelet-Rich Plasma and Plasma Treatment
Background
PRP is a biological treatment strategy that is thought to pro-
mote tissue regeneration and healing.27 This promising
autologous augmentation option has prompted increased sci-
entific interest and has become widely utilized in the field of
orthopaedics over the last 15 years.81 Such widespread appli-
cation is validated by strong market projections, with the
global market for PRP predicted to reach $590 million by
2025, at a Compound Annual Growth Rate of 10.9%.82

High concentrations of blood cells, growth factors, cytokines,
chemokines, and other biologically active factors in PRP are
thought to direct tissue formation during the acute healing
phase and as such, have been widely investigated for musculo-
skeletal repair and regeneration.83 Though there is clinical evi-
dence to suggest that return to activity can be achieved earlier
with PRP treatment at the site of injury, the effect has been
found to be short term.84,85 Furthermore, although PRP therapy
for skeletal muscle repair has demonstrated functional improve-
ment in preclinical and limited clinical trials,84-88 there remains
Figure Preparation differences between platelet-rich
a lack of standardization, clinical uniformity, and robust scien-
tific evidence needed to affirm its clinical utility in treating skele-
tal muscle strain injuries.

Despite the increased prevalence of orthobiologic utility,
evaluating the clinical efficacy of PRP remains a significant
challenge due to widespread variability and inadequate clini-
cal reporting standards. Insufficient reporting of preparation
techniques, composition and other variables that may influ-
ence clinical outcomes precludes interpretation, reproduc-
ibility and cross-study comparison.89 In response to clear
evidence of such defective reporting methodologies, the
American Academy of Orthopaedic Surgeons (AAOS) estab-
lished minimum reporting requirements for clinical studies
evaluating the efficacy of PRP. The Minimum Information for
Studies Evaluating Biologics in Orthopaedics (MIBO) guide-
lines for PRP were created to promote increased transpar-
ency, reproducibility, and enhanced clinical evaluation
capabilities.89 Though these enhanced reporting standards
will likely provide clarity on the utility of autologous blood
concentrates in musculoskeletal treatment, a more novel,
diverging theory may provide evidence instead for the use of
PPP in facilitating muscle regeneration.

It is known that PRP is comprised of various biologically
active factors including PDGF, VEGF, TGF-b1, EGF, and
IGF-1.90,91 The concentrations of these factors vary with the
preparation of PRP, as leukocyte-poor PRP (LP-PRP), leuko-
cyte-rich PRP (LR-PRP), and PPP all contain different compo-
sitions of bioactive molecules, as previously described
plasma (PRP) and platelet-poor plasma (PPP).
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(Figure).92-94 PPP is a modified preparation of whole blood
or PRP by means of a second centrifugal spin to remove
blood cells, and it has also been shown to contain biologi-
cally active factors.95 PPP contains smaller concentrations of
bioactive molecules including PDGF and IGF-1, which are
theorized to be responsible for muscle repair.96 In a recent
laboratory study, blood from 7 human donors was processed
to produce PPP and LP-PRP preparations that were subse-
quently subjected to a second spin to remove the platelets.14

In vitro analysis of these biologic products revealed that these
acellular platelet-poor preparations led to the stimulation of
myoblast differentiation necessary for skeletal muscle regen-
eration, while unmodified LP-PRP led to myoblast prolifera-
tion.14 Though further clinical studies are required to further
elucidate the effect of these biologics, these preliminary data
suggest that PPP may in fact be a more optimal treatment for
muscle regeneration than traditionally formulated PRP.14

A literature search was performed in an attempt to find stud-
ies pertaining to PRP (different preparations) or PPP and their
effect on aspects of skeletal muscle healing and regeneration.
The following summarizes the general findings of the literature
search, which includes both preclinical and clinical studies.
Platelet-Rich Plasma and Plasma Treatment:
Clinical Studies
A search for ongoing and completed clinical trials investigating
the use of PPP and PRP on skeletal muscle healing revealed a
total of nine studies (Table 1), 3 of which are active or currently
recruiting (Table 2). All but 2 of the identified studies investi-
gated the effects of PRP in its application as an interventional
treatment for skeletal muscle (NCT01440725, NCT03676205,
NCT02607462, NCT02726464, and NCT03371888),86,97 the
remaining 2 studies compare the effects of PPP and PRP
as an investigational treatment for skeletal muscle healing
(NCT03618979 and NCT01812564). Of the 9 studies,
results were only available in 4 (NCT03371888 and
NCT01812564).86,97

Outcome measures were available for all studies with a large
amount of overlap as many studies examined: time to recovery
(NCT01440725),86,97 time to return to play (NCT03676205
and NCT01812564), and pain intensity (NCT01440725,
NCT03676205, NCT02726464, NCT03371888, and
NCT03618979) between treatment and placebo groups.86,97 All
of the aforementioned studies reported on visual analog scale for
pain between baseline to postintervention; results on this out-
come were only available for studies that used PRP as a treatment
(NCT03371888).86,97 A statistically significant short-term
improvement in pain intensity from baseline to various time
points post-PRP injection was reported in all PRP studies that
included pain as an outcome (NCT03371888).86,97

While available results were sparse, the bulk of the findings
were complementary to each other. A study comparing the
effects of PPP and PRP injections in the treatment of hamstring
strains in athletes found that subjects injected with PRP
returned to play significantly faster than those who received
PPP injections to the control group (NCT01812564). Similarly,
a study examining the effect of PRP injections as a treatment for
acute muscle tears found a statistically faster return to play time
in subjects receiving a PRP injection, when compared to sub-
jects who received no injection at all.97 Results from the
included clinical studies provide evidence that PRP injections
into injured skeletal muscle may have a therapeutic effect in
reducing pain as a result of injury (NCT03371888),86,97 while
also reducing return to play time (NCT01812564).97
Platelet-Rich Plasma and Plasma Treatment:
In Vitro Studies
Five studies investigated the use of PPP and PRP on myogen-
esis in vitro (Table 3). Four of the 5 studies use only PRP as
the investigational treatment for skeletal muscle cells98-101;
the 1 remaining study used several autologous blood prod-
ucts, including PRP and PPP, to compare the effects of inves-
tigational treatments on skeletal muscle cells.14

The type of cell used in vitro varied from study-to-study,
including C2C12 myoblasts (murine), human CD56 positive
myoblast cell line (hMC), human skeletal muscle myoblast, and
skeletal muscle cells (intrinsic to Sprague-Dawley rats).98 While
no 2 studies had identical outcome measures, each study analyzed
the effects of the respective treatment on cellular proliferation and
differentiation in the in vitro model(s).14,98-101 Interestingly, all 5
studies using PRP as either the main investigational treatment or
as a comparative treatment saw a statistically significant increase
in myogenic proliferation.14,98-101 On the contrary, 1 study
reported inhibition of myogenic differentiation,14 while the rest of
the studies reported no significant changes in myogenic differenti-
ation from PRP treatment alone.98-101 A significant increase in
myogenic differentiation was reported in 2 studies: 1 study used
PPP and platelet-depleted PRP as separate investigational treat-
ments,14 while the other study used a treatment composed of a
combination of PRP and Decorin, a TGF-b inhibitor.99
Platelet-Rich Plasma and Plasma Treatment:
Preclinical Studies
A search for ongoing and completed preclinical trials investigat-
ing the use of PPP and PRP on skeletal muscle healing gave rise
to 10 studies (Table 4). While all of the studies investigated the
in vivo effects of PRP as a skeletal muscle treatment in animal
subjects, none of the included studies used PPP as an investiga-
tional treatment. PRP was the primary investigative treatment
used in the majority of the studies, though several studies inves-
tigated the use of PRP in concomitance with other treatments,
such as exercise training,102 cold-water immersion,103swim
training,104 and low-level laser therapy.105

The lack of studies investigating PPP as a treatment in animal
models makes it near impossible to compare the therapeutic
effects of PRP and PPP treatment on skeletal muscle in preclini-
cal applications. Further, due to each study manipulating differ-
ent variables (ie, treatments and outcomes), no concise
conclusion on the effect of PRP treatment in skeletal muscle
could be deduced from the above studies. Nonetheless, follow-
ing application of PRP, many studies found evidence of



Table 1 Completed and Ongoing Clinical Trials Investigating the Use of PPP and PRP on Skeletal Muscle Healing

Study Title Outcome Results Intervention

Efficacy of platelet-rich plasma for
treatment of muscle rupture with
hematoma (NCT01440725)

Time to recovery of lesions (second-
ary; pain)

No results PRP

Platelet-rich plasma in acute muscle
injuries (NCT03676205)

Return to play, pain intensity No results PRP

PRP therapy to m. gluteus medius
during THA (NCT02607462)

The decrease of T2-weighted signal-
ing between PRP and placebo
group

Recruiting PRP

Testing the characteristics of plate-
let-rich plasma in sports medicine
(NCT02726464)

Pain score Ongoing PRP

The platelet-rich plasma in the ther-
apy of temporomandibular disor-
ders (NCT03371888)

Pain intensity Significant improvement in pain per
the VAS

PRP

Ultrasound-guided injections of
platelet-rich plasma for muscle
injury in professional athletes.
Comparative study86

Pain relief, recovery, regeneration Short-term significant improvement
in pain per the VAS and strength
and range of motion

PRP

Does platelet-rich plasma decrease
time to return to sports in acute
muscle tear? A randomized con-
trolled trial97

Pain, recovery time, return to play Significant improvement in pain,
return to play and full recovery. No
statistical significance at 2-year
follow-up

PRP

A trial comparing three orthobio-
logic therapies on atrophied multi-
fidus muscles in patients with low
back pain (NCT03618979)

Changes in atrophy of muscle, (sec-
ondary; pain)

Recruiting PPP + extracellular
matrix, PRP,
PRP + platelet lysate

Use of platelet-rich plasma in the
management of acute hamstring
muscle strain injury
(NCT01812564)

Return to play Significant difference in return to
play for the PRP vs PPP group
(quicker for PRP)

PRP, PPP

6
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Table 2 Ongoing/Active Clinical Trials Investigating the Effects of platelet-rich plasma (PRP) or platelet-poor plasma (PPP) on
Skeletal Muscle, Per clinicaltrials.gov

Study Title
ClinicalTrials.gov
Identifier Status Location

A trial comparing three orthobio-
logic therapies on atrophied multi-
fidus muscles in patients with low
back pain

NCT03618979 Recruiting Centeno-Schultz Clinic, Broomfield,
Colorado, United States|Centeno-
Schultz Clinic, Lone Tree, Colo-
rado, United States

PRP therapy to m. gluteus medius
during total hip arthroplasty

NCT02607462 Recruiting Satakunta Central Hospital, Pori,
Finland

Testing the characteristics of plate-
let-rich plasma in sports medicine

NCT02726464 Active—not
recruiting

Allan McGavin Sports Medicine
Centre, Vancouver, British Colum-
bia, Canada
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enhanced skeletal muscle healing and regeneration102,104-109

and a decrease in oxidative damage at the site of the
injury.103,110 However, the effect on skeletal muscle healing
depends on the concentration of PRP used, the time frame post-
injury that the PRP was injected and whether the PRP was used
as a solo treatment or in combination with other treatments.
Future Directions and
Conclusion
The application of PRP for the treatment of skeletal muscle has
been widely investigated, while very limited data exist on PPP
treatment for skeletal muscle repair and regeneration. PRP and
PPP also contain deleterious cytokines, such as TGF-b1, that can
cause fibrosis and inhibit native skeletal muscle regenera-
tion.15,111 Recent efforts have focused on the customization of
PRP and PPP to inhibit/reduce biological factors associated with
SASP and fibrosis for local administration.12,15,16 When investi-
gating the effect of TGF-b1 neutralization, an increase in regener-
ative myofibers and satellite cells was observed in PRP and
customized PRP (inhibition of TGF-b1), though there was a
notable decrease in fibrotic deposition in the customized
PRP.16 This suggests that neutralizing TGF-b1 within PRP can
promote muscle regeneration while significantly reducing
fibrosis.12,16,112,113 Various antifibrotic agents that block the
effects of TGF-b1 are being investigated, including the adminis-
tration of Food and Drug Administration-approved antihyperten-
sive medication, losartan (Cozaar). By blocking the stimulation of
TGF-b1 production, losartan (Cozaar) has been shown to signifi-
cantly reduce fibrosis and enhance muscle fiber regeneration in
mice, prompting further investigation and promising preliminary
outcomes in clinical case studies.12

An intriguing option to improve PRP and PPP treatments for
skeletal muscle regeneration is the use of senolytic agents. As previ-
ously discussed, cellular senescence leads to satellite cell dysfunc-
tion through cell autonomous pathways, senescent transition of
muscle stem cells themselves, or through noncell autonomous
means through exposure to senescence associate secretory factors
in neighboring muscle and immune cells.5,38-43 Thus, it stands to
reason that targeting senescence may improve biologics efficacy
either through the reduction of local SASP factors prior to
treatment, or via removal of senescent cells from the biologic itself.
In the case of plasma-based biologic therapies, this would likely be
through pretreatment in the patient given the regenerative proper-
ties of plasma are likely related soluble factors and not progenitor
cells themselves.114 Indeed, pro-fibrotic factors have been found in
the secretome of senescent fibroblasts, including ACTA2, encoding
a-SMA, COL1A1, COL1A2, TGF-b, and fibronectin 1 (FN1).
These factors activate macrophages and myofibroblasts, decrease
FAP apoptosis, and increase local inflammation which when dysre-
gulated will lead to excessive extracellular matrix (ECM) produc-
tion and the formation of a permanent fibrotic scar.46,63,73,115,116

Aberrant muscle fibrosis is certainly present in pathologic settings
(ie, muscle dystrophy) but also during aging given the chronic
inflammation and immunosenescence known to occur during the
aging process.51,52,73 Indeed, several murine studies demonstrate
that senescent cells and SASP factors are known to accumulate in
aged and dystrophic muscles73 highlighting senescence as a thera-
peutic target. Accordingly, there is also some evidence to support a
beneficial role for senolytics to improve muscle regeneration
through the modulation of SASP production and reduction of
fibrosis. It has been shown in humans andmice that cellular senes-
cence mediates idiopathic pulmonary fibrosis, and senescent cell
ablation with senolytic drugs (dasatinib plus quercetin) in the idio-
pathic pulmonary fibrosis setting improves pulmonary function
through reduction in fibrosis.37,45,46,51,52,59,60,73,117 Thus, senolytic
treatment prior to autologous PPP treatments may improve the
regenerative potential of the biologic through reduction in fibrosis,
especially in aged or sarcopenic patients.

In summary, our understanding of PRP/PPP and their mech-
anism of action continues to expand while further innovative
strategies are developing to optimize the therapeutic efficacy.
There is recent evidence that a synergistic effect on muscle heal-
ing has been demonstrated using a combinatorial approach of
antifibrotic agents (ie, losartan [Cozaar]) and PRP.12 However,
further clinical research is warranted to support these findings
prior to routine clinical utility. Furthermore, there is a paucity
of in vivo studies and clinical trials supporting the use of an
acellular blood fraction (PPP) for the treatment of injured skele-
tal muscle. The future direction of PRP or PPP treatment for
skeletal muscle repair will be based on the customization of bio-
logical factors by targeting disease-specific markers (ie, SASP or
individual factors such as TGF-b1) and senescent cells that attri-
bute to the development of fibrosis.

ctgov:NCT03618979
ctgov:NCT02607462
ctgov:NCT02726464


Table 3 Completed In Vitro Trials Investigating the Use of PPP and PRP on Skeletal Muscle Healing

Study Title Outcome Results Intervention Cell Model

Platelet-rich plasma promotes
skeletal muscle cell migra-
tion in association with
upregulation of FAK, paxillin,
and F-Actin formation98

Cell migration, proliferation,
differentiation (or fusion),
regenerative effect

PRP Group: Statistically sig-
nificant change in cell
migration (dose dependent),
wound healing, cell spread-
ing, and increased F-actin

PRP Skeletal muscle cells (rats)

Platelet-rich plasma, espe-
cially when combined with a
TGF-Œ � inhibitor promotes
proliferation, viability and
myogenic differentiation of
myoblasts in vitro99

Proliferation, metabolic activ-
ity, cytokine profile, expres-
sion of myogenic regulatory
factors

PRP Groups: Statistically sig-
nificant: increase in prolifer-
ation, downregulation of
TGF-b expression
PRP +Decorin group:
Downregulation of MSTN
levels, myogenic
differentiation

PRP and PRP +Decorin (TGF-
b inhibitor)

Human myogenic progenitors
(hMC)

The influence of platelet-rich
plasma on myogenic
differentiation100

Differentiation and
proliferation

PRP groups: Statistically sig-
nificant: increase in cell pro-
liferation, change in MRFs
(differentiation marker)

PRP at different
concentrations

Myoblasts (mice, C2C12)

Effect of platelet-rich plasma
on degeneration change of
rotator cuff muscles: In vitro
and in vivo evaluations101

Degenerative changes PRP: Stimulated proliferation
and inhibited myogenic and
adipose differentiation

10% PRP Myoblasts (mice, C2C12)

The use of platelet-rich and
platelet-poor plasma to
enhance differentiation of
skeletal myoblasts: Implica-
tions for the use of autolo-
gous blood products for
muscle regeneration14

Differentiation and
proliferation

Platelet depleted (PPP, ssPRP
and ssMod-PRP) groups:
Increase in myoblast differ-
entiation and decrease in
proliferation PRP Group:
Increase in myoblast
proliferation

PRP, PPP and Mod-PRP (TGF-
b1 and MSTN depleted)

Human skeletal muscle
myoblasts
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Table 4 Completed Preclinical Trials Investigating the Use of PPP and PRP on Skeletal Muscle Healing

Study Title Outcome Results Intervention Model

Combined platelet-rich
plasma and cold water
immersion treatment mini-
mize the damage following a
skeletal muscle stretch
injury in rats103

Oxidative damage (via oxida-
tive stress marker levels)

PRP, CWI and PRP +CWI
groups: Significant reduction in
oxidative markers

PRP, cold water immersion
(CWI), PRP +CWI

Rat—gastrocnemius

Platelet-rich plasma does not
reduce skeletal muscle
fibrosis after distraction
osteogenesis118

Fibrosis No significant difference in
fibrotic area between PRP and
control groups

PRP Wild-type mice—
gastrocnemius

Does the injection of platelet-
rich plasma induce changes
in the gene expression and
morphology of intact Thor-
oughbred skeletal
muscle?106

Expression of marker genes
related to muscle regenera-
tion, satellite cell activity,
pro-inflammatory and pro-
myogenic cytokine levels

PRP Group: Significantly higher
levels of MHC-e gene expres-
sion (day 2), MHC-I gene
expression (day 7) and HGF (7
days)

PRP Thoroughbreds—
gluteus medius

Postinjury exercise and plate-
let-rich plasma therapies
improve skeletal muscle
healing in rats but are not
synergistic when
combined.102

Skeletal muscle healing Exer, PRP and PRP-Exer groups:
Statistically significant
increase in muscle force myo-
fiber CSA and area density of
collagen I. Greatest improve-
ments seen w/ individual treat-
ments (PRP, Exer)

PRP, exercise (Exer),
PRP + Exer (PRP-Exer)

Wistar rat—
gastrocnemius

Analysis of photobiomodula-
tion associated or not with
platelet-rich plasma on
repair of muscle tissue by
Raman spectroscopy105

Photobiomodulation PRP group: Presence of regener-
ation cells LLtP group—great-
est presence of cells in
regeneration, lower area of
injury, healthy-appearing mus-
cle fibers

PRP, low-level laser therapy
(LLt), PRP + low-level laser
therapy (LLtP)

Wistar rat—
gastrocnemius

Platelet-rich plasma reduces
the oxidative damage deter-
mined by a skeletal muscle
contusion in rats110

Oxidative damage (via oxida-
tive stress marker levels)

PRP group: Statistically signifi-
cant reduction in oxidative
markers

PRP Wistar rat—
gastrocnemius

Effect of platelet-rich plasma
concentration on skeletal
muscle regeneration: An
experimental study107

Muscular regeneration, neu-
rovascularization, fibrosis
and inflammation

PRP Groups: Enhanced muscle
regeneration, neurovasculari-
zation and slight reduction in
fibrosis

Two concentrations of PRP Wistar rat—
longissimus dorsi

Effect of platelet-rich plasma
therapy associated with
exercise training in muscu-
loskeletal healing in rats104

Regenerative effect in muscu-
loskeletal healing

SWP group: Both a statistically
significant decrease in Type I
collagen fibers and an increase
in Type III collagen fibers at

Sedentary + PRP (SPRP),
swim trained (ST), swim
trained + PRP (SWP)

Wistar rat—
vastus lateralis
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