Identifying the Right
Patients for BVN Ablation
with the Intracept
Procedure

ASIPP 2022 Dr. Brian Goentzel

Brian Goentzel, MD

Disclosures

Consultant for Relievant and Abbott

Who is an ideal patient for basivertebral nerve ablation?

What is Vertebrogenic Low Back Pain?

- 71% have midline low back pain (anterior column pain)
- Pain that is worse with bending forward (flexion) and sitting
- DDD (Pfirrmann grade III to V) with Modic present on MRI
- Any amount of Modic on MRI (respond with even small amounts of Modic localized to the endplate or anterior corner)
 - "...the patient that is complaining of midline low back pain and is walking around in the exam room when I come in, because they can't sit in one position long"
 - Pain that is worse with bending forward (flexion) and sitting
 - · "Restless spine"

Pathophysiology of Vertebrogenic Pain

- Endplate defects allow proinflammatory disc tissue to leak into the bone marrow, inciting an inflammatory response
- Chronic endplate inflammation leads to Modic changes (MC) on MRI and to increased nociceptor density
- Prevalence and density of endplate nociceptors higher in vertebral bodies with MC¹
- Vertebrogenic Pain is a Paradigm Shift in the Science of CLBP

Modic Changes are Correlated with Severe CLBP

Association between discography and moderate to severe Type 1 and Type 2 Modic changes ¹

- 38% sensitivity
- 88% specificity with moderate Modic 1 and 2
- 100% specificity with severe Modic 1 and 2

Modic Changes were associated with historical LBP, and with severity and duration of symptoms (p<.05) ²

Patients with MC Type 1 seek care more often and have poor outcomes to conservative treatment ^{3,4}

Weishaupt D et al. Radiology; 2001

² Mok F et al. The Spine Journal; 2016

³ Jensen OK et al. The Spine Journal; 2014

⁴ Jensen RK et al. BMC Musculoskelet Disord; 2011

Modic Changes - Objective Biomarker & Binary Indicator of Vertebrogenic Pain

MRI T1 (fat)

MRI T2 (fat and water)

Modic Type 1 (1 tissue hyper-intense):

- Hypointense T1W
- Hyperintense T2W MR images

Modic Type 2 (2 tissues hyper-intense):

Hyperintense T1W and T2W MR images

Key Messages: Chronic Vertebrogenic Low Back Pain

- Vertebral body endplates are richly innervated by nociceptors that are branches of the basivertebral nerve – with a greater prevalence and density of nociceptors than the disc
- Disc material leaking through damaged and degenerated endplates creates bone marrow inflammation, which results in vertebrogenic pain
- Chronic bone marrow inflammation leads to Modic Changes
- Modic Changes are associated with the presence and severity of CLBP, making them a good biomarker for vertebrogenic pain

Innervation of the Vertebral Body Endplate

- The basivertebral nerve is a branch of the sinuvertebral nerve, which enters the vertebral body through the basivertebral foramen
- The basivertebral nerve was thought to be a trophic nerve, and was there to maintain bone health. In addition to its role in bone health, the BVN has been confirmed to have a nociceptive role.
- PGP 9.5 staining positive nociceptors confirmed at the vertebral endplates ¹
- Vertebral endplates are more innervated than intervertebral discs 1
- •Basivertebral nerve (BVN) innervates the endplates and transmits pain signals from the vertebral endplates to the CNS ²

Distribution of the basivertebral nerve

Indications/Contraindications for BVN Ablations

Indications

- Chronic Low Back Pain of at least 6 months duration; and
- Failure to respond to at least 6 months of conservative care; and
- MRI changes consistent with Modic Type 1 or Type 2 at one or more levels from L3 to S1

Contraindications

- Severe cardiac or pulmonary compromise
- Where the targeted ablation zone is <10mm away from a sensitive structure not intended to be ablated
- With active systemic infection or local infection in the treatment area
- Pregnancy
- Skeletally immature (≤18)
- With Implantable Pulse Generators (e.g. pacemakers, defibrillators)
- Where untended tissue damage may result
- With instruments not tested / specified for use with RFG

BVN (Intracept Procedure) Ablation Procedure Steps

1. Access the Pedicle

3. Place the Radiofrequency

2. Create the Channel

4. Ablate the BVN

Step 1 – Access the Pedicle

Step 2 – Create the Channel (Lumbar)

Step 3 - Place the Radiofrequency Probe (Lumbar)

AP LAT

SMART 5+ Year Data: Sustained Improvements in Pain and Function Long-Term

Study Design

- Five-year follow-up of the SMART US treatment arm
- US PP BVN ablated patients; 85% response rate (100/117)
- Mean follow-up 6.4 years (range 5.4 7.8)
- Mean age was 47 years; majority <u>></u>5 yrs with CLBP

Key Findings

- Improvements in pain and function maintained more than 5 years postprocedure (ODI, VAS)
- 75% responder rate (defined as patients reporting both a <u>></u>15 pt ODI and <u>></u>2 point VAS improvement)

INTRACEPT 12-Month: Improvements Sustained, Replicated in Re-Baselined Group

Study Design

- 2nd RCT evaluating BVN ablation; n=140 (interim analysis included 104)
- Àllowed treatment of 4 VBs and also previous discectomy
- Mean age was 49 years; majority >5 yrs with CLBP

Key Findings

- BVN ablation arm patients maintained Improvements in pain and function 12 mo. post-procedure: 25.7 point reduction in mean ODI, 3.8cm reduction in VAS
- Patients previously in the Standard Care arm who underwent BVN ablation showed similar improvement six months post-procedure

Similar Improvements in ODI and VAS Across Studies Post-Intracept Procedure

References

- Dudli S et al. ISSLS Prize Winner; 2017
- Weishaupt D et al. Radiology; 2001
- Mok F et al. The Spine Journal; 2016
- Jensen OK et al. The Spine Journal; 2014
- Jensen RK et al. BMC Musculoskelet Disord; 2011
- Fields AJ, Liebenberg EC, Lotz JC. The Spine Journal 2014;14(3):513-521.
- Bailey JF, Liebenberg E, Degmetich S, Lotz JC. Innervation patterns of PGP 9.5-positive nerve fibers within the human lumbar vertebra. Journal of Anatomy 2011;218(3):263-70.
- Fischgrund JS, Rhyne A, Macadaeg K, Moore G, Kamrava E, Yeung C, et al. Long-term outcomes following intraosseous basivertebral nerve ablation for the treatment of chronic low back pain: 5year treatment arm results from a prospective randomized double-blind sham-controlled multicenter study. Eur Spine J. 2020 Aug;29(8):1925-1934. DOI: 10.1007/s00586-020-06448-x
- Smuck M, Khalil J, Barrette K, et al. Reg Anesth Pain Med Epub ahead of print: May 24, 2021. doi:10.1136/rapm-2020-102259

Questions?